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OPERATORS DEFINED ON ORDERED BANACH SPACES

BY

CONSTANTIN P. NICULESCU

The aim of this note is to give Lebesgue-Radon-Nikodyfn type theorems for the notion
of absolute continuity defined below,

In [4] we introduced the following relation between bounded linear
operators U :Z — X (here Z denotes an ordered Banach space and X
a Banach space) and positive functionals pe Z* :

DEFINITION. U is said to be locally absolutely continuous with res-

Pect to u (i.e. U < p)if for every >0 and every z ¢ Z, 2 >0, there exists
a 8 = ¥(¢, 2) > 0 such that :

0 <y <z wy) <3, implies | Uy)| < e

It was remarked by Bourbaki [1] that for x and A two positive Radon
measures given on a compact Hausdorff space S the following statements
are equivalent :

(1) » < A in the sense of the definition above
(ii) w < A as measures defined on the Borel c-algebra. %(S) associat-

ed to &§,ie., for every ¢ >0 and every A e #(S) there exists a § =
= (¢, A) >0 such that :

Be #(8), BcA, N\B)< § implies u(B) < ¢

A more precise result was obtained in [5] (see also [6] for details)
where the following operational analogue of the well known theorem of
Bartle-Dunford-Schwartz concerning the existence of control meagures
is proved : ”Let S be a compact Hausdorff space and let X be a Banach
space. Then an operator T € #(C(8), X) is weakly compact if and only if
there exists a positive Radon measure p on § such that 7' < w.”

Our results make use of methods from the theory of ordered vector
spaces, a key role being played by the Freudenthal theorem on spec-
tral representation in the form given by Yoshida [9]. Because the natural
order on a w*-algebra fails to have Riesz decomposition property, the
theory developed here cannot be applied in such a situation. On the other
hand our non-commutative extension for Lebesgue-Radon-Nikodym
theorem (see Theorem 2.4) is formally identical to the result obtained by
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Sakai [8] in the case of w*-algebras. So, we strongly believe that both
these results can be derived from a general Lebesgue-Radon-N icodym
type theorem.

1. REVIEW ON ORDERED VECTOR SPACES

The aim of this section is to recall some basic definitions and re-
sults which will be needed.

An ordered Banach space X is a Riesz space if the positive cone is
closed and has the Riesz decomposition property. If X* denotes the to-
pological dual of X then, as well known, X* is an order complete Banach
lattice.

A positive element of an order s-complete Banach lattice Y is said
to be a Freudenthal unit if inf(u, |y|) = 0 implies that ¥ = 0. In this
case each e e Y with inf (¢, v — €) = 0 is called a quasi-unit and the ele-
ments belonging to the linear hull of all quasi-units are usually called
simple. The following result is due to Yoshida [9]:

1.1 THEOREM. Let Y be an order o-complete Banach lattice with unit.
Then every positive element of X is the least upper bound (l.u.b.) of an increas-
ing sequence of positive simple elements.

Another important property of Y is that each y € Y generates a
band projection P,: Y — Y whose image is

[y] = {ze Y ;int (|2], |@]) =0 for all & e Y with inf (], 1y ]) = O}

A positive functional y* e Y* is said to be order o-continuous if
Y.+ 0 (in order) implies y*(y,) — 0. We shall denote by Y* the vector
sublattice of all y* € Y* which are the difference of two order s-continuous
positive funectionals.

1.2 ProposITION. Let pe Y¥, u >0, and let 2 e Y*. The following
statements are equivalent :

(@) e [pl, v
(b) A € u i.e. for each ze Y, 2 >0 and each ¢ > 0 there is a 5 =
= §(s, 2) >0 such that :
¥l <2 wly) < dimplies |[My)| < e
(¢) Ae Y¥ and in addition :

¥y >0, wy)=0 implies Ay)=0.

Proof. The equivalence (a)<¢ (b) was remarked by Bourbaki [1]
ch. 2, Proposition 4. We shall show only that (¢) = (b). Suppose that the
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contrary is true. Then there exist a 2, e Y, 2,> 0, a scalar ¢,> 0 and a se-
quence 2z, €[0, 2,] such that p(z,) < 2" and |A|(z,) > ¢, for all » > 1.
Put :

z =1inf {sup (2x; k >n); n > 1}.

Since A and p are order o-continuous it follows that u(z) = 0 and
| A|(2) > €, By hypothesis, we have that ANy) =0 for each 0 <y < 2
and thus:

Ai(2) = sup {Ny); 0 <y <=2} =0.

Hence | A|(2) = 22+(2) — M#z) = 0, which contradicts the fact that ¢, # 0,
.e.d.

4 We shall need also the following extension property for positive

functionals :

1.3 ProposiTiON. Let X be a linear subspace of a Riesz space Y. If
ge Y* g >0, then each linear functional f: X — R satisfying the inequa-
lity .

flz) < inf{g(y);9¢ ¥, y > a, 0}
for all x € X, has an extension he Y* with 0 < h < g.

This result is an easy consequence of the Hahn-Banach theorem.

We end this section by discussing a new concept that seems to be
the natural framework for studying the abstract Lebesgue-Radon-Niko-
dym type theorems.

1.4 DEFINITION An ordered quasi-algebra with unit % >0 is a
triplet (s, *, /) that satisfies the following four conditions :

(Ql) o and o are Riesz spaces and &/ contains ./ as an ordered
vector subspace ;

(Q2)*: o X oA — o is a positive bilinear mapping

(Q3) a xu = u xa = a for every a;

(Q4) & is contained in the band generated by w in &/** (i.e., u is
total over /).

A non trivial exemple can be obtained by considering a positive
Radon measure, say u, given on a compact space. Then (L3(w), *, L*(p))
is an ordered quasi-algebra with unit if one considers for *, the point-
wise multiplication.

1.5 DEFINITION. Given two quasi-algebras with unit, say Q=(, *, &)
and Q' = (o', *', '), a morphism from @ into Q' is a pair (o, 3),
where :

(i) ¢e2(st ),

(i) ¢ e L(o, A,

(iii) ¢(a * b) = o¢(a) *' o(b) for all a, b € ,

(iv) ¢(u) = w'.

According to the above definition @ is a sub-quasi-algebra of ¢’
if o is an ordered subspace of &', & is an ordered subspace of s’
#u=1u and a *b =a*"bforall a, be .
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If o is a Banach lattice and also an ordered Banach algebra with
multiplicative unit w > 0, then every closed sublattice # of o/ gives rise
to a sub-quasi-algebra (#, *, o) provided that u e s# and # < [u], the
band being calculated in s7**, '

The order properties of a quasi-algebra @ = (&, *, &) can be improv-
ed by embedding @ into its second dual. Given an a e & we can consider
the following two operators L,, R, e (&, o) defined by L,(z) = a*z
and R,(z) =2*a, z€ «. Then the mappings ¢ — L¥ and ¢ — R¥ can
be extended to «/** as follows :

(Lzf)a = x(R¥f)
and
(Rzf)a = o(L¥f)

for all x € o**, fe of*, ae of. Put:

@ * Yy = L¥*y)
and
Ty = R¥¥y)

for all &, y € &/**. Then (/**, x,, **) and (HL**, *,, **) both satisfy
(Q1) — (Q3) above. For (Q4) we must consider [u], the band generated
by u in A**, instead of the entire space A**, Thus we obtain two order
complete quasi-algebras, both containing @ as a sub-quasi-algebra.

2. THE MAIN RESULTS

The aim of this section is to déscribe the band generated by a posi-
tive functional p in the special case when p is defined on an ordered quasi-

algebra @ = (&, *, o) with unit u > 0.
Let (e &% 1 >0 and put u = | «.

2.1 LEMMA. If o is order o-complete and the bilinear mapping
(@, b) — p(a * b) is order o-continuous in each argument then :

a e s, p(la]) = 0 implies f(a #b) = @(b * a) 0 for every be o.

Consequently (see Proposition 1.2 above), the functionals (oL, and
0.0 R, both belong to [n] for all a e .

Proof. Clearly, the implication is true for every b € & with |[b]| < v a,
particularly for all simple elements of &/. The case of an arbitrary b e o
follows now from Theorem 1.1 above, g.e.d.

2.2 LEMMA. If o is order o-complete and the bilinear map ping
(a, b) — i(axb) is order o-continuous in eack argument, then for each
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ve o* with inf (v, . — v) = O there ewists an e € o/ which satisfies the
following three conditions :

Hho<e<u,
ii) p(inf (e, w —€)) =0,
iii) v= oL, = Qo R,
Proof. From the hypothesis it follows that
0 = inf (v, w. — v) w =inf {v(a) + (. — v) (b); @ + b =u,a, b >0}
which implies the existence of a sequence O0<a,<wu such that
(p—v)a, < 27" and v(u —a,) < 27", n = 1. Put:

e = inf {sup (ay; k >n); n > 1}

Because v and g — v are order s-continuous and positive it follows that :

(1) 0 < (u— vie < (p—v) (sup (ax; k >n))
and
(2) 0< v(u—e)=limv(uw—sup (a,;k > n)) <limv(u — a,) = 0.

Let ae o, 0< aginf (6, w —e). Then v(a) =(x—v) (a) =0
and thus:
u(inf (e, u — €)) < (u — v) (inf (¢, w — €) + v(inf (e, w — €)) = 0.

We pass now to the proof of (iii).-First, let us denote by v a positive
linear extension of v to & such that 0 < ¥ < {i. See Proposition 1.3 above.
Then 9 is order o-continuous and because of (2) we have that
J((uw—e) *x) = 0 for all v e «. In fact, if |#| < yu then:

[9((w — e} x2)| < V((u — €) * [#]) < yv(u —¢) = 0.

By Theorem 1.1 above it follows that each positive » € &« is the Lu.b. of
an increasing sequence of elements of the form considered above and thus
our assertion is a consequence of the fact that 9 is order o-continuous.

In a similar way we can prove that
S@xu—e)=( —3)(exa)=(L—73) (@xe) =0
for every z € & and thus:
@) = S((u — )+ @) + T(e*x) = V(e*a) = fi(e* ) = i(wxe) =0

for every z ¢ &, q.e.d.
2.3 LemmA. If o 18 order o-complete and the bilinear mapping

(a, b) — (a * b) is order c-continuous, then for each ve A*, with |v| <
< vyu there exists an a € o/ such that |a| < yu and
v(@) = {i(a * 2) = @(z * a)
for every x e .
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Proof. Clearly it suffices to consider only the case when 0 < v < u.
Then by Theorem 1.1 above v is the lL.u.b. of an increasing sequence of
positive simple elements S, e [1]. By using Lemma 2.2 above we check the
existence of an increasing sequence of positive elements s, € & such that
0< 9, <u and

Bu(@) = [(8n * @) = L(w * 8,)
for every x € /. Put :
a =sup {s,; n =1}
Then 0 < @ < u and for each positive # € o we have :
v(x) = (sup 8,) (x) = sup S,(x) = lim p(s, * ) = lim J(z * 8,) =
= {i(a * 2) = {i(« * a), qe.d.

In order to state our main result we need a definition. If Z is an order
c-complete Banach lattice, a closed sublattice Y < Z is said to be s-minimal
if Y is order s-complete and v, | 0 in Y implies ¥, | 0 in Z.

2.4 THEOREM. Let Q = (of, *, &) be a quasi-algebra with unit w >0

and let e o*, 0 >0. If # denote an order c-complete c-minimal closed
sublattice of [u] which contains s, then for each ve *, with |v| < vy,
there exists an a € H# suh that |a| < yu and :

v(x) = a(a *, ) = @(x *, a)

fJor every x € of. Here [u] denotes the band generated by w in /**.
Proof. Our result follows immediately from Lemma 2.3 above by

embedding @ into (s, *,, «/**) and observing that each ve o* is order
c-continuous when considered as belonging to #* q.e.d.

Under the assumptions of the above theorem there is defined a rela-
tion of equivalency on # as follows :

@~ y it and only if i(jz — y|) = O.

The completion of the quotient space /g with respect to the following
norm :

lzlly = sup (|| % y)
ly|i <1
VI

is a Banach lattice that will be denoted by L({1).
There is defined also a canonical mapping

Vst i — [1]
given by
V@) =felg* ven

and it is clear that this mapping can be extended by continuity to L(3).
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We can restate Theorem 2.4 above in terms of Vu ; as follows :

2.5 THEOREM.

(i) The image of V , = contains all functionals v e [u] with |v| < yp.

(i) If o* is weakly sequentiolly complete then V ,, - extends to a lattice
isometry from L(R) onto [w] if, and only if,

A([1] #.a) = sup [E(h %,D)]
piss

for every he H#, ae .
Proof. Clearly only (ii) needs to be motivated. Because * is weakly
sequentially complete then the topology of «/* is order c-continuous i.e.

x¥ | 0 (in order) implies ||&;¥| — 0

See [4] or [6] for details. By combining this remark with Theorem 1.1
above we obtain that the linear subspace generated by all quasi-units
of [1]is dense in [p.]. Now if we assume that :

V;r,;(lhl) = |V;f,§_(h)!

for every he #, then V,, ~ isan isometry that maps quasi-units into quasi-
units (combine Lemma 2.2 with the fact that V, - is one-to-one) and our
result follows.

2.6 REMARK. If the canonical mapping V, - is one-to-one then :

G(@ % y) = LY * @)
for all x, ¥y € #.

In fact, let h e # with |k| < yu. By Lemma 2.3 above h is the only
element of s such that

fi(h %, @) = QY = @) = Wz = Y)
for all x € of. Particularly this is the case when & is a simple element.
The case of an arbitrary h e # follows from Theorem 1.1 above and the
order continuity of [ regarded as an element of o/**¥.

3. EXAMPLES

Let S be a compact Hausdorff space and let 5# be the Banach lattice
of all Borel measurable bounded functions f: 8 — R. If u denotes a posi-
tive Radon measure on S then L(#, #’') = L*(y) and |f|n= |fu| for every
fe #. By Theorem 2.5(ii) above it follows that the canonical mapping
V, ; extends to a lattice isometry from L'(y) onto [u] and this fact is

notfhing but the classical Lebesgue-Radon-Nikodym theorem.



92 CONSTANTIN P. NICULESCU 8

If 1. denotes a positive Haar measure on a locally compact group G
then L'(u) can be endowed with a structure of a Banach algebra in which
the multiplication is the product of convolution :

(xxy)t = Sw(t — ) y(s) du(s).

This algebra has a multiplicative unit if and only if @ is discrete and gene-
rally this unit is not a Freudenthal unit.

3.1 PROPOSITION. Let p. be a positive Radon measure. Then the Banach
lagtice L'(y) has a structure of quasi-algebra with unit only if dim L(u) < oo.

Proof. Clearly, we can assume that L(u) is also separable. Let
7 be the functional on L'(u) associated to 1e L®(p). If (LY(w), *, &) is a
quasi-algebra with unit and # = L'(u) then the canonical mapping
Ve at I (u) = L>(u) is onto (see Theorem 2.5 above) and thus L*(u)
must be separable, which implies (see [2] Theorem 9, Cor. 2) that dim
L®(u) < o0, q.e.d.

If p is a positive Radon measure on a compact Hausdorff space &
then (L3(p), *, L(w)) constitutes a quasi-algebra with unit 1 e L%(u),

where * denotes the point-wise multiplication. Put A(f) = S fdy for all

fe L¥u) and # = L*u). Then IL(\) = L*p) and the canonical mapping
V 4 » establishes an order isometry from L2(p) onto (L2 (w))* ; this coincides
with the usual characterization (due to F. Riesz) for the conjugate of a
Hilbert space.

4. THE VECTOR CASE

In the sequel (&, %, &) will denote a quasi-algebra with unit and X
will denote a Banach space. In addition, o is assumed to have the appro-
Ximation property in the sense of Grothendieck [3].

Let (e o* 0 >0 and let © = | o/. We shall prove the following
Lebesgue-Radon-Nikodym type theorem that gives information on the
vector space N,(«/, X) of all nuclear operators 7 : of — X, T <y.

4.1 THEOREM. N, (&, X) = &* é X.

Here the cap means the completion in the projective topology i.e., the
finest locally convex topology on [n]®X which makes continuous the canoni-
cal mapping :

[b] X X - [p] ® X.

Proof. Because & has the approximation property we have

N(o, X) =o*® X and thus it remains to prove the following inclusion :

Ny, X) < [p] ® X. .
Let T e N,(s#, X). We can extend T to O(8) as a nuclear operator,
S denoting the unit ball of «*. Use Hahn-Banach extension theorem and

Theorem 1 in [3]. Then there exists an #* e X* such that T < |a*. T},
which follows easily by combining the following two results :



9 LEBESGUE-RADON-NIKODYM TYPE THEOREMS FOR OPERATORS 93-

(i) Let m:J — X be a c-additive measure defined on a Boolean
c-algebra. There is defined an z* e X* such that m < |x*om|. See [7]
for details.

(ii) Let U e £(0(8), X) be a compact operator and let w be a positive
Radon measure on S such that the measure m, canonically associated to
U is absolutely continuous with respect to p. Then U < u in the sense
of the definition in Introduction. See [6] for details.

Considered as a nuclear operator on C(8), T can be represented as
follows :

T:zp'n®xm

where z, e X, Y} ||@,]] < oo and {in}s is an equi-continuous sequence of
scalar Radon measures on S.Moreover g, = W,y =+ Hn, 2 Where {tn1)n IS
an equi-continuous sequence of Radon measures on S such that u, ; <
< |2*oT| and u, , are all singular with respect to a*oT. We have :

T — Z a1 ® xﬂT': Z Yn,g & Xy

The left side is equivalent to a measure on S which is absolutely continuous.
with respect to «* o T. On the contrary, the right side is a singular measure
with respect to #*.T and thus:

T=Y thn1 ® Ta

Because T < u, it follows that * T < u, which in turn implies that
un, < wpfor all w > 1, q.e.d.

4.2 Under the assumptions of Theorem 2.5 (ii) we obtain an algebraic
isomorphism :

T,z ®lp: L) ® X = Ny(o, X)
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