REVUE ROUMAINE DE MATHÉMATIQUES PURES ET APPLIQUÉES

TOME XXIII, Nº 1

1978

EDITURA ACADEMIEI REPUBLICII SOCIALISTE ROMANIA

LEBESGUE-RADON-NIKODYM TYPE THEOREMS FOR OPERATORS DEFINED ON ORDERED BANACH SPACES

BY

CONSTANTIN P. NICULESCU

The aim of this note is to give Lebesgue-Radon-Nikodym type theorems for the notion of absolute continuity defined below.

In [4] we introduced the following relation between bounded linear operators $U: Z \to X$ (here Z denotes an ordered Banach space and X a Banach space) and positive functionals $\mu \in Z^*$:

DEFINITION. U is said to be locally absolutely continuous with respect to μ (i.e. $U \leq \mu$) if for every $\varepsilon > 0$ and every $z \in Z$, z > 0, there exists a $\delta = \delta(\varepsilon, z) > 0$ such that :

$$0 < y < z, \ \mu(y) < \delta, \ \text{implies} \ \|U(y)\| < \varepsilon.$$

It was remarked by Bourbaki [1] that for μ and λ two positive Radon measures given on a compact Hausdorff space S the following statements are equivalent:

(i) $\mu \ll \lambda$ in the sense of the definition above

(ii) $\mu \ll \lambda$ as measures defined on the Borel σ -algebra. $\mathscr{B}(S)$ associated to S, i.e., for every $\varepsilon > 0$ and every $A \in \mathscr{B}(S)$ there exists a $\delta = \delta(\varepsilon, A) > 0$ such that:

 $B \in \mathscr{B}(S), \ B \subset A, \ \lambda(B) < \delta \ \text{implies} \ \mu(B) < \varepsilon$

A more precise result was obtained in [5] (see also [6] for details) where the following operational analogue of the well known theorem of Bartle-Dunford-Schwartz concerning the existence of control measures is proved: "Let S be a compact Hausdorff space and let X be a Banach space. Then an operator $T \in \mathcal{L}(C(S), X)$ is weakly compact if and only if there exists a positive Radon measure μ on S such that $T \leq \mu$."

Our results make use of methods from the theory of ordered vector spaces, a key role being played by the Freudenthal theorem on spectral representation in the form given by Yoshida [9]. Because the natural order on a w^* -algebra fails to have Riesz decomposition property, the theory developed here cannot be applied in such a situation. On the other hand our non-commutative extension for Lebesgue-Radon-Nikodym theorem (see Theorem 2.4) is formally identical to the result obtained by

REV. ROUM. MATH. PURES ET APPL., TOME XXIII, Nº 1, P. 85-93, BUCAREST, 1978

Sakai [8] in the case of w^* -algebras. So, we strongly believe that both these results can be derived from a general Lebesgue-Radon-Nicodym type theorem.

1. REVIEW ON ORDERED VECTOR SPACES

The aim of this section is to recall some basic definitions and results which will be needed.

An ordered Banach space X is a Riesz space if the positive cone is closed and has the Riesz decomposition property. If X^* denotes the topological dual of X then, as well known, X^* is an order complete Banach lattice.

A positive element of an order σ -complete Banach lattice Y is said to be a Freudenthal unit if $\inf(u, |y|) = 0$ implies that y = 0. In this case each $e \in Y$ with $\inf(e, u - e) = 0$ is called a quasi-unit and the elements belonging to the linear hull of all quasi-units are usually called simple. The following result is due to Yoshida [9]:

1.1 THEOREM. Let Y be an order σ -complete Banach lattice with unit. Then every positive element of Y is the least upper bound (l.u.b.) of an increasing sequence of positive simple elements.

Another important property of Y is that each $y \in Y$ generates a band projection $P_y: Y \to Y$ whose image is

 $[y] = \{z \in Y; \text{ inf } (|z|, |x|) = 0 \text{ for all } x \in Y \text{ with inf } (|x|, |y|) = 0\}.$

A positive functional $y^* \in Y^*$ is said to be order σ -continuous if $y_n \downarrow 0$ (in order) implies $y^*(y_n) \to 0$. We shall denote by Y_o^* the vector sublattice of all $y^* \in Y^*$ which are the difference of two order σ -continuous positive functionals.

1.2 PROPOSITION. Let $\mu \in Y_o^*$, $\mu > 0$, and let $\lambda \in Y^*$. The following statements are equivalent:

(a) $\lambda \in [\mu]$,

(b) $\lambda \leq \mu$ i.e. for each $z \in Y$, z > 0 and each $\varepsilon > 0$ there is a $\delta = \delta(\varepsilon, z) > 0$ such that :

$$|y| \leq z$$
, $|\mu(|y|) < \delta$ implies $|\lambda(y)| < \varepsilon$

(c) $\lambda \in Y_o^*$ and in addition :

$$y > 0$$
, $\mu(y) = 0$ implies $\lambda(y) = 0$.

Proof. The equivalence (a) \Leftrightarrow (b) was remarked by Bourbaki [1] ch. 2, Proposition 4. We shall show only that (c) \Rightarrow (b). Suppose that the

$$z = \inf \{ \sup (z_k; k \ge n); n \ge 1 \}.$$

Since λ and μ are order σ -continuous it follows that $\mu(z) = 0$ and $|\lambda|(z) > \varepsilon_0$. By hypothesis, we have that $\lambda(y) = 0$ for each $0 \le y \le z$ and thus:

$$\lambda_+(z) = \sup \{\lambda(y); \ 0 \leqslant y \leqslant z\} = 0.$$

Hence $|\lambda|(z) = 2\lambda_+(z) - \lambda(z) = 0$, which contradicts the fact that $\varepsilon_0 \neq 0$, q.e.d.

We shall need also the following extension property for positive functionals :

1.3 PROPOSITION. Let X be a linear subspace of a Riesz space Y. If $g \in Y^*$, g > 0, then each linear functional $f : X \to R$ satisfying the inequality :

$$f(x) \leq \inf \{g(y) \, ; \, y \in Y, \ y \geq x, 0\}$$

for all $x \in X$, has an extension $h \in Y^*$ with $0 \leq h \leq g$.

This result is an easy consequence of the Hahn-Banach theorem.

We end this section by discussing a new concept that seems to be the natural framework for studying the abstract Lebesgue-Radon-Nikodym type theorems.

1.4 DEFINITION An ordered quasi-algebra with unit u > 0 is a triplet $(\mathcal{A}, *, \tilde{\mathcal{A}})$ that satisfies the following four conditions:

(Q1) \mathscr{A} and $\widetilde{\mathscr{A}}$ are Riesz spaces and $\widetilde{\mathscr{A}}$ contains \mathscr{A} as an ordered vector subspace;

 $(Q2) * : \mathscr{A} \times \mathscr{A} \to \mathscr{A}$ is a positive bilinear mapping

(Q3) a * u = u * a = a for every a;

(Q4) \mathscr{A} is contained in the band generated by u in \mathscr{A}^{**} (i.e., u is total over \mathscr{A}).

A non trivial exemple can be obtained by considering a positive Radon measure, say μ , given on a compact space. Then $(L^2(\mu), *, L^1(\mu))$ is an ordered quasi-algebra with unit if one considers for *, the pointwise multiplication.

1.5 DEFINITION. Given two quasi-algebras with unit, say $Q = (\mathscr{A}, *, \mathscr{A})$ and $Q' = (\mathscr{A}', *', \mathscr{A}')$, a morphism from Q into Q' is a pair $(\varphi, \tilde{\varphi})$, where :

(i) $\varphi \in \mathscr{L}(\mathscr{A}, \mathscr{A}'),$

(ii) $\tilde{\varphi} \in \mathscr{L}(\tilde{\mathscr{A}}, \tilde{\mathscr{A}}),$

(iii) $\tilde{\varphi}(a * b) = \varphi(a) *' \varphi(b)$ for all $a, b \in \mathcal{A}$,

(iv) $\tilde{\varphi}(u) = u'$.

According to the above definition Q is a sub-quasi-algebra of Q'if \mathscr{A} is an ordered subspace of \mathscr{A}' , $\widetilde{\mathscr{A}}$ is an ordered subspace of \mathscr{A}' , u = u' and a * b = a *' b for all $a, b \in \mathscr{A}$. If \mathscr{A} is a Banach lattice and also an ordered Banach algebra with multiplicative unit u > 0, then every closed sublattice \mathscr{H} of \mathscr{A} gives rise to a sub-quasi-algebra $(\mathscr{H}, *, \mathscr{A})$ provided that $u \in \mathscr{H}$ and $\mathscr{H} \subset [u]$, the band being calculated in \mathscr{A}^{**} .

The order properties of a quasi-algebra $Q = (\mathcal{A}, *, \tilde{\mathcal{A}})$ can be improved by embedding Q into its second dual. Given an $a \in \mathcal{A}$ we can consider the following two operators L_a , $R_a \in \mathcal{L}(\mathcal{A}, \mathcal{A})$ defined by $L_a(z) = a * z$ and $R_a(z) = z * a$, $z \in \mathcal{A}$. Then the mappings $a \to L_a^*$ and $a \to R_a^*$ can be extended to \mathcal{A}^{**} as follows:

 $(L_x^*f)a = x(R_a^*f)$ $(R_x^*f)a = x(L_a^*f)$

for all $x \in \mathscr{A}^{**}$, $f \in \tilde{\mathscr{A}^*}$, $a \in \mathscr{A}$. Put :

$$x *_{\rho} y = L_{x}^{**}(y)$$

and

and

$$x *_{\lambda} y = R_x^{**}(y)$$

for all $x, y \in \mathscr{A}^{**}$. Then $(\mathscr{A}^{**}, *_{\rho}, \widetilde{\mathscr{A}^{**}})$ and $(\mathscr{A}^{**}, *_{\lambda}, \mathscr{A}^{**})$ both satisfy $(\mathbf{Q}1) - (\mathbf{Q}3)$ above. For $(\mathbf{Q}4)$ we must consider [u], the band generated by u in \mathcal{A}^{**} , instead of the entire space \mathcal{A}^{**} . Thus we obtain two order complete quasi-algebras, both containing Q as a sub-quasi-algebra.

2. THE MAIN RESULTS

The aim of this section is to describe the band generated by a positive functional μ in the special case when μ is defined on an ordered quasialgebra $Q = (\mathscr{A}, *, \widetilde{\mathscr{A}})$ with unit u > 0.

Let
$$\tilde{\mu} \in \mathscr{A}^*, \tilde{\mu} > 0$$
 and put $\mu = \tilde{\mu} \mid \mathscr{A}$.

2.1 LEMMA. If \mathscr{A} is order σ -complete and the bilinear mapping $(a, b) \rightarrow \tilde{\mu}(a * b)$ is order σ -continuous in each argument then :

$$a \in \mathcal{A}, \mu(|a|) = 0 \text{ implies } \tilde{\mu}(a \ast b) = \tilde{\mu}(b \ast a) 0 \text{ for every } b \in \mathcal{A}.$$

Consequently (see Proposition 1.2 above), the functionals $\tilde{\mu} \circ L_a$ and $\tilde{\mu} \circ R_a$ both belong to $[\mu]$ for all $a \in \mathcal{A}$.

Proof. Clearly, the implication is true for every $b \in \mathscr{A}$ with $|b| \leq \gamma a$, particularly for all simple elements of \mathscr{A} . The case of an arbitrary $b \in \mathscr{A}$ follows now from Theorem 1.1 above, q.e.d.

2.2 LEMMA. If \mathscr{A} is order σ -complete and the bilinear mapping $(a, b) \rightarrow \tilde{\mu}(a * b)$ is order σ -continuous in each argument, then for each

5

 $v \in \mathscr{A}^*$ with inf $(v, \mu - v) = 0$ there exists an $e \in \mathscr{A}$ which satisfies the following three conditions:

- i) $0 \leq e \leq u$,
- ii) $\mu(\inf(e, u e)) = 0$,
- iii) $v = \tilde{\mu} \circ L_e = \tilde{\mu} \circ R_e$,

Proof. From the hypothesis it follows that :

 $0 = \inf (\nu, \mu - \nu) \ u = \inf \{\nu(a) + (\mu - \nu) \ (b); \ a + b = u, a, b \ge 0\}$ which implies the existence of a sequence $0 \le a_n \le u$ such that $(\mu - \nu) \ a_n \le 2^{-n}$ and $\nu(u - a_n) \le 2^{-n}$, $n \ge 1$. Put:

 $\mathbf{e} = \inf \{ \sup (a_k; k \ge n); n \ge 1 \}$

Because v and $\mu - v$ are order σ -continuous and positive it follows that :

(1)
$$0 < (\mu - \nu)e < (\mu - \nu) (\sup (a_k; k \ge n))$$

and

(2)
$$0 \leqslant \nu(u-e) = \lim_{n} \nu(u-\sup(a_k;k \geqslant n)) \leqslant \lim_{n} \nu(u-a_n) = 0.$$

Let $a \in \mathcal{A}$, $0 \leq a \leq \inf (e, u - e)$. Then $\nu(a) = (\mu - \nu)$ (a) = 0and thus:

$$\mu(\inf(e, u - e)) \leqslant (\mu - \nu) (\inf(e, u - e) + \nu(\inf(e, u - e)) = 0.$$

We pass now to the proof of (iii). First, let us denote by $\tilde{\nu}$ a positive linear extension of ν to $\tilde{\mathscr{A}}$ such that $0 \leq \tilde{\nu} \leq \tilde{\mu}$. See Proposition 1.3 above. Then $\tilde{\nu}$ is order σ -continuous and because of (2) we have that $\tilde{\nu}((u-e)*x) = 0$ for all $x \in \mathscr{A}$. In fact, if $|x| \leq \gamma u$ then:

$$|\tilde{\nu}((u-e)*x)| \leqslant \tilde{\nu}((u-e)*|x|) \leqslant \gamma \nu(u-e) = 0.$$

By Theorem 1.1 above it follows that each positive $x \in \mathscr{A}$ is the l.u.b. of an increasing sequence of elements of the form considered above and thus our assertion is a consequence of the fact that \tilde{v} is order σ -continuous.

In a similar way we can prove that

$$\widetilde{\mathbf{v}}(x*(u-e)) = (\widetilde{\mu} - \widetilde{\mathbf{v}}) \ (e*x) = (\widetilde{\mu} - \widetilde{\mathbf{v}}) \ (x*e) = 0$$

for every $x \in \mathcal{A}$ and thus:

$$\nu(x) = \tilde{\nu}((u-e)*x) + \tilde{\nu}(e*x) = \tilde{\nu}(e*x) = \tilde{\mu}(e*x) = \tilde{\mu}(x*e) = 0$$

for every $x \in \mathcal{A}$, q.e.d.

2.3 LEMMA. If \mathscr{A} is order σ -complete and the bilinear mapping $(a, b) \rightarrow \tilde{\mu}(a * b)$ is order σ -continuous, then for each $\nu \in \mathscr{A}^*$, with $|\nu| \leq \langle \gamma \mu$ there exists an $a \in \mathscr{A}$ such that $|a| \leq \gamma u$ and

$$\mathbf{v}(x) = \tilde{\mu}(a \ast x) = \tilde{\mu}(x \ast a)$$

for every $x \in \mathcal{A}$.

Proof. Clearly it suffices to consider only the case when $0 \le v \le \mu$. Then by Theorem 1.1 above v is the l.u.b. of an increasing sequence of positive simple elements $S_n \in [\mu]$. By using Lemma 2.2 above we check the existence of an increasing sequence of positive elements $s_n \in \mathcal{A}$ such that $0 \le s_n \le u$ and

$$S_n(x) = \tilde{\mu}(s_n * x) = \tilde{\mu}(x * s_n)$$

for every $x \in \mathscr{A}$. Put :

$$a = \sup \{s_n; n \ge 1\}.$$

Then $0 \leq a \leq u$ and for each positive $x \in \mathcal{A}$ we have :

$$\begin{aligned} \mathsf{v}(x) &= (\sup \, S_n) \, (x) = \sup \, S_n(x) = \lim \, \tilde{\mu}(s_n \ast x) = \lim \, \tilde{\mu}(x \ast s_n) = \\ &= \tilde{\mu}(a \ast x) = \tilde{\mu}(x \ast a), \text{ q.e.d.} \end{aligned}$$

In order to state our main result we need a definition. If Z is an order σ -complete Banach lattice, a closed sublattice $Y \subset Z$ is said to be σ -minimal if Y is order σ -complete and $y_n \downarrow 0$ in Y implies $y_n \downarrow 0$ in Z.

2.4 THEOREM. Let $Q = (\mathcal{A}, *, \tilde{\mathcal{A}})$ be a quasi-algebra with unit u > 0and let $\tilde{\mu} \in \tilde{\mathcal{A}^*}, \tilde{\mu} > 0$. If \mathcal{H} denote an order σ -complete σ -minimal closed sublattice of [u] which contains \mathcal{A} , then for each $v \in \mathcal{A^*}$, with $|v| \leq \gamma \mu$, there exists an $a \in \mathcal{H}$ sub that $|a| \leq \gamma u$ and :

$$\nu(x) = \tilde{\mu}(a *_{\lambda} x) = \tilde{\mu}(x *_{\lambda} a)$$

for every $x \in \mathcal{A}$. Here [u] denotes the band generated by u in \mathcal{A}^{**} .

Proof. Our result follows immediately from Lemma 2.3 above by embedding Q into $(\mathcal{H}, *_{\lambda}, \tilde{\mathscr{A}^{**}})$ and observing that each $\nu \in \mathscr{A}^{*}$ is order σ -continuous when considered as belonging to \mathcal{H}^{*} q.e.d.

Under the assumptions of the above theorem there is defined a relation of equivalency on \mathscr{H} as follows :

$$x \stackrel{\tilde{\mu}}{\sim} y$$
 if and only if $\tilde{\mu}(|x-y|) = 0$.

The completion of the quotient space $\mathscr{H}/\tilde{\mu}$ with respect to the following norm :

$$\|x\|_{\widetilde{\mu}} = \sup_{\substack{||y|| \leq 1\\ y \in \mathscr{A}_+}} \widetilde{\mu}(|x| *_{\lambda} y)$$

is a Banach lattice that will be denoted by $L(\tilde{\mu})$.

There is defined also a canonical mapping

 $V_{\mathscr{H},\widetilde{\mu}}:\mathscr{H}/\widetilde{\mu}\to [\mu]$

given by

$$V_{\boldsymbol{x},\,\widetilde{\boldsymbol{u}}}(\hat{x}) = \widetilde{\mu} \circ L_{x}^{**} \ x \in \hat{x}$$

and it is clear that this mapping can be extended by continuity to $L(\tilde{\mu})$.

We can restate Theorem 2.4 above in terms of $V_{\mathscr{H}, \widetilde{\mu}}$ as follows :

2.5 THEOREM.

(i) The image of $V_{\mathscr{H},\tilde{\mu}}$ contains all functionals $\nu \in [\mu]$ with $|\nu| \leq \gamma \mu$. (ii) If \mathscr{A}^* is weakly sequentially complete then $V_{\mathscr{H},\tilde{\mu}}$ extends to a lattice isometry from $L(\tilde{\mu})$ onto $[\mu]$ if, and only if,

$$\widetilde{\mu}(\,|\,h\,|\,st_{\lambda}\,a) = \sup_{\substack{|b|\leqslant a\b\in\mathscr{A}}}|\widetilde{\mu}(h\,st_{\lambda}\,b)\,|$$

for every $h \in \mathcal{H}$, $a \in \mathcal{A}$.

Proof. Clearly only (ii) needs to be motivated. Because \mathscr{A}^* is weakly sequentially complete then the topology of \mathscr{A}^* is order σ -continuous i.e.

 $x_n^* \downarrow 0$ (in order) implies $||x_n^*|| \to 0$

See [4] or [6] for details. By combining this remark with Theorem 1.1 above we obtain that the linear subspace generated by all quasi-units of $[\mu]$ is dense in $[\mu]$. Now if we assume that :

$$V_{\mathcal{H},\widetilde{u}}(|h|) = |V_{\mathcal{H},\widetilde{u}}(h)|$$

for every $h \in \mathscr{H}$, then $V_{\mathscr{H}, \tilde{\mu}}$ is an isometry that maps quasi-units into quasiunits (combine Lemma 2.2 with the fact that $V_{\mathscr{H}, \tilde{\mu}}$ is one-to-one) and our result follows.

2.6 REMARK. If the canonical mapping $V_{\mathscr{H}, \tilde{\mu}}$ is one-to-one then:

$$\tilde{\mu}(x *_{\lambda} y) = \tilde{\mu}(y *_{\lambda} x)$$

for all $x, y \in \mathcal{H}$.

In fact, let $h \in \mathcal{H}$ with $|h| \leq \gamma u$. By Lemma 2.3 above h is the only element of \mathcal{H} such that

$$\tilde{\mu}(h \ast_{\lambda} x) = \tilde{\mu}(y \ast_{\lambda} x) = \tilde{\mu}(x \ast_{\lambda} y)$$

for all $x \in \mathscr{A}$. Particularly this is the case when h is a simple element. The case of an arbitrary $h \in \mathscr{H}$ follows from Theorem 1.1 above and the order continuity of $\tilde{\mu}$ regarded as an element of \mathscr{A}^{***} .

3. EXAMPLES

Let S be a compact Hausdorff space and let \mathscr{H} be the Banach lattice of all Borel measurable bounded functions $f: S \to R$. If μ denotes a positive Radon measure on S then $L(\mathscr{H}, \mathscr{H}') = L^1(\mu)$ and $|f|\mu = |f\mu|$ for every $f \in \mathscr{H}$. By Theorem 2.5(ii) above it follows that the canonical mapping $V_{\mathscr{H},\tilde{\mu}}$ extends to a lattice isometry from $L^1(\mu)$ onto $[\mu]$ and this fact is nothing but the classical Lebesgue-Radon-Nikodym theorem. If μ denotes a positive Haar measure on a locally compact group G then $L^{1}(\mu)$ can be endowed with a structure of a Banach algebra in which the multiplication is the product of convolution :

$$(x * y) t = \int x(t - s) y(s) d\mu(s).$$

This algebra has a multiplicative unit if and only if G is discrete and generally this unit is not a Freudenthal unit.

3.1 PROPOSITION. Let μ be a positive Radon measure. Then the Banach lattice $L^{1}(\mu)$ has a structure of quasi-algebra with unit only if dim $L^{1}(\mu) < \infty$.

Proof. Clearly, we can assume that $L^1(\mu)$ is also separable. Let λ be the functional on $L^1(\mu)$ associated to $1 \in L^{\infty}(\mu)$. If $(L^1(\mu), *, \tilde{\mathscr{A}})$ is a quasi-algebra with unit and $\mathscr{H} = L^1(\mu)$ then the canonical mapping $V_{\mathscr{H},\lambda}: L^1(\mu) \to L^{\infty}(\mu)$ is onto (see Theorem 2.5 above) and thus $L^{\infty}(\mu)$ must be separable, which implies (see [2] Theorem 9, Cor. 2) that dim $L^{\infty}(\mu) < \infty$, q.e.d.

If μ is a positive Radon measure on a compact Hausdorff space S then $(L^2(\mu), *, L^1(\mu))$ constitutes a quasi-algebra with unit $1 \in L^2(\mu)$, where * denotes the point-wise multiplication. Put $\lambda(f) = \int f d\mu$ for all $f \in L^2(\mu)$ and $\mathscr{H} = L^2(\mu)$. Then $L(\lambda) = L^2(\mu)$ and the canonical mapping $V_{\mathscr{H},\lambda}$ establishes an order isometry from $L^2(\mu)$ onto $(L^2(\mu))^*$; this coincides with the usual characterization (due to F. Riesz) for the conjugate of a Hilbert space.

4. THE VECTOR CASE

In the sequel $(\mathscr{A}, *, \widetilde{\mathscr{A}})$ will denote a quasi-algebra with unit and X will denote a Banach space. In addition, \mathscr{A} is assumed to have the approximation property in the sense of Grothendieck [3].

Let $\tilde{\mu} \in \mathscr{A}^*, \tilde{\mu} > 0$ and let $\mu = \tilde{\mu} | \mathscr{A}$. We shall prove the following Lebesgue-Radon-Nikodym type theorem that gives information on the vector space $N_{\mu}(\mathscr{A}, X)$ of all nuclear operators $T : \mathscr{A} \to X, T \ll \mu$.

4.1 THEOREM. $N_{\mu}(\mathscr{A}, X) = \mathscr{A}^* \otimes X.$

Here the cap means the completion in the projective topology i.e., the finest locally convex topology on $[\mu] \otimes X$ which makes continuous the canonical mapping:

$$[\mu] \times X \to [\mu] \otimes X.$$

Proof. Because \mathscr{A} has the approximation property we have $\hat{N}(\mathscr{A}, X) = \mathscr{A}^* \otimes X$ and thus it remains to prove the following inclusion:

$$N_{\mu}(\mathscr{A}, X) \subset [\mu] \otimes X.$$

Let $T \in N_{\mu}(\mathscr{A}, X)$. We can extend T to C(S) as a nuclear operator, S denoting the unit ball of \mathscr{A}^* . Use Hahn-Banach extension theorem and Theorem 1 in [3]. Then there exists an $x^* \in X^*$ such that $T \leq |x^* \circ T|$, which follows easily by combining the following two results :

92

(i) Let $m: \mathcal{T} \to X$ be a σ -additive measure defined on a Boolean σ -algebra. There is defined an $x^* \in X^*$ such that $m \ll |x^* \circ m|$. See [7] for details.

(ii) Let $U \in \mathscr{L}(C(S), X)$ be a compact operator and let μ be a positive Radon measure on S such that the measure m, canonically associated to U is absolutely continuous with respect to μ . Then $U \ll \mu$ in the sense of the definition in Introduction. See [6] for details.

Considered as a nuclear operator on C(S), T can be represented as follows:

$$T=\sum \mu_n \otimes x_n,$$

where $x_n \in X$, $\sum ||x_n|| < \infty$ and $\{\mu_n\}_n$ is an equi-continuous sequence of scalar Radon measures on S. Moreover $\mu_n = \mu_{n,1} + \mu_{n,2}$, where $\{\mu_{n,1}\}_n$ is an equi-continuous sequence of Radon measures on S such that $\mu_{n,1} \ll |x^* \circ T|$ and $\mu_{n,2}$ are all singular with respect to $x^* \circ T$. We have:

$$T - \sum \mu_{n,1} \otimes x_n^{\bar{\tau}} = \sum \mu_{n,2} \otimes x_n.$$

The left side is equivalent to a measure on S which is absolutely continuous with respect to $x^* \circ T$. On the contrary, the right side is a singular measure with respect to $x^* \circ T$ and thus :

$$T = \sum \mu_{n,1} \otimes x_n.$$

Because $T \ll \mu$, it follows that $x^* \circ T \ll \mu$, which in turn implies that $\mu_{n,1} \ll \mu$ for all $n \ge 1$, q.e.d.

4.2 Under the assumptions of Theorem 2.5 (ii) we obtain an algebraic isomorphism :

$$V_{\mathscr{H},\,\tilde{\mu}} \,\, \hat{\otimes} \, \mathbf{1}_{\mathcal{X}} : L(\tilde{\mu}) \,\, \hat{\otimes} \,\, X \xrightarrow{\sim} N_{\mu}(\mathscr{A},\,X)$$

Received December 27, 1973 Revised Form May 30, 1975

University of Craiova Department of Mathematics

REFERENCES

- 1. N. BOURBAKI, Inlegration, Hermann, Paris, 1956.
- 2. A. GROTHENDIECK, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math., 5 (1953). 129–173
- 3. Produits tensoriels topologiques el espaces nucléaires, Memoirs. Amer. Math. Soc., 16 (1955).
- 4. C. NICULESCU, Ópérateurs absolument continus, Revue Roumaine Math. Pures et Appl., 19 225 - 236 (1974).
- 5. Absolute continuity and weak compactness, Bull. Amer. Math. Soc., 81, 1064 1066 (1975).
- 6. Jordan decomposition and locally absolutely continuous operators. Revue Roumaine Math. Pures et Appl., 21, 343 – 352 (1976).
- 7. V. RYBAKOV, Theorem of Bartle-Dunford-Schwartz concerning vector measures (in Russian) Matematiceskie Zametki 7, 247 – 254 (1970).
- 8. S. SAKAI, A Radon-Nikodym theorem in w*-algebras, Bull. Amer. Math. Soc., 71, 149-151. (1965).
- 9. K. YOSHIDA, Functional Analysis, Springer, 1965.